Recurrent Genetic Mutations in Lymphoid Malignancies

  • Datum: 2017-05-05 kl 13:15
  • Plats: Rudbecksalen, Dag Hammarskjölds Väg 20, Uppsala
  • Föreläsare: Young, Emma
  • Webbsida
  • Arrangör: Experimentell och klinisk onkologi
  • Kontaktperson: Young, Emma
  • Disputation


In recent years, the genetic landscape of B-cell derived lymphoid malignancies, including chronic lymphocytic leukemia (CLL), has been rapidly unraveled, identifying recurrent genetic mutations with potential clinical impact. Interestingly, ~30% of all CLL patients can be assigned to more homogeneous subsets based on the expression of a similar or “stereotyped” B-cell receptor (BcR). Considering that biased distribution of genetic mutations was recently indicated in specific stereotyped subsets, in paper I, we screened 565 subset cases, preferentially assigned to clinically aggressive subsets, and confirm the SF3B1 mutational bias in subset #2 (45%), but also report on similarly marked enrichment in subset #3 (46%). In contrast, NOTCH1 mutations were predominantly detected in subsets #1, #8, #59 and #99 (22-34%). This data further highlights a subset-biased acquisition of genetic mutations in the pathogenesis of at least certain subsets. Aberrant NF-κB signaling due to a deletion within the NFKBIE gene previously reported in CLL warranted extended investigation in other lymphoid malignancies. Therefore, in paper II, we screened 1460 patients with various lymphoid malignancies for NFKBIE deletions and reported enrichment in classical Hodgkin lymphoma (27%) and primary mediastinal B-cell lymphoma (PMBL) (23%). NFKBIE-deleted PMBL cases had higher rates of chemorefractoriness and inferior overall survival (OS). NFKBIE-deletion status remained an independent prognostic marker in multivariate analysis. EGR2 mutations were recently reported in advanced stage CLL patients; thus, in paper III we screened 2403 CLL patients for mutations in EGR2. An overall mutational frequency of 3.8% was reported and EGR2 mutations were associated with younger age, advanced stage and del(11q). EGR2 mutational status remained an independent marker of poor outcome in multivariate analysis, both in the screening and validation cohorts. Whole-genome sequencing (WGS) of 70 CLL cases, assigned to poor-prognostic subsets #1 and #2 and indolent subset #4, were investigated in Paper IV and revealed a similar skewing of SF3B1 mutations in subset #2 and NOTCH1 mutations in subset #1 to that reported in Paper I. Additionally, an increased frequency of the recently proposed CLL driver gene RPS15 was observed in subset #1. Finally, novel non-coding mutational biases were detected in both subset #1 and #2 that warrant further investigation.