Impaired Glucose Tolerance in Childhood Obesity: Contribution of Glucagon, GLP-1 and Inflammation

  • Date:
  • Location: Room B21, BMC, Husargatan 3, Uppsala
  • Doctoral student: Manell, Hannes
  • About the dissertation
  • Organiser: Institutionen för medicinsk cellbiologi
  • Contact person: Manell, Hannes
  • Disputation

Disputation

In the wake of increased obesity prevalence, impaired glucose tolerance (IGT) and type 2 diabetes (T2D) in childhood and adolescence is increasingly common. Given the negative impacts these conditions have on health over time, understanding the pathophysiology in those affected early in life is important. Both the proglucagon-derived peptides and low-grade inflammation have been implicated in the development of obesity-related complications. The aim of this thesis was to study across the glucose tolerance spectrum in children and adolescents with obesity 1) proglucagon-derived peptides glucagon, GLP-1 and glicentin, 2) dipeptidyl peptidase-4 (DPP-4) and its degradation of GLP-1 and 3) novel inflammatory markers. To this end, children and adolescents of the Uppsala Longitudinal Study of Childhood Obesity were studied.   

Children and adolescents with obesity had higher fasting plasma glucagon concentrations than lean controls. In particular visceral adiposity, hyperinsulinemia, triglycerides and free fatty acids (FFAs) were associated with high plasma glucagon concentrations. In isolated islets elevated FFAs caused hypersecretion of glucagon. In children and adolescents with IGT or T2D, fasting plasma glucagon was further elevated and the GLP-1 and glicentin response to an oral glucose tolerance test (OGTT) was decreased. In T2D plasma glucagon increased during the first 15 minutes of OGTT. Plasma DPP-4 concentrations were elevated in obesity and associated with lower proportion of intact GLP-1 but not with IGT. Several pro-inflammatory markers were elevated in children and adolescents with obesity but not further elevated in IGT or T2D with the exception of low plasma Tumor necrosis factor-related weak inducer of apoptosis (TWEAK) levels, which were associated with IGT, hyperinsulinemia and hyperglucagonemia. High plasma hepatocyte growth factor (HGF) concentration was associated with increased risk of further weight gain in children and adolescents with obesity.

In conclusion, elevated glucagon concentration at fasting, a hyperglucagonemic response to OGTT and reduced GLP-1 and glicentin are characteristics of IGT and T2D development in childhood obesity reflecting altered usage of the proglucagon gene. DPP-4 concentrations are elevated in childhood obesity but not associated with IGT. Reduced circulating TWEAK was identified as a novel marker of IGT early in life. Children with obesity and high HGF are less likely to respond well to lifestyle intervention.