Immunogenetic variation along the latitudinal gradient in Scandinavian anuran species: Evolutionary processes, demography and infection

  • Datum:
  • Plats: Zootisalen, Norbyvägen 14-18, Uppsala
  • Doktorand: Cortazar-Chinarro, Maria
  • Om avhandlingen
  • Arrangör: Zooekologi
  • Kontaktperson: Cortazar-Chinarro, Maria
  • Disputation

In this thesis, I explore genetic variation and the contemporary evolutionary processes affecting genes involved in the adaptive immune defense (Major Histocompatibility Complex; MHC) and the innate immune defense (AMP; Antimicrobial Peptides) over a large geographical gradient in anuran species.

The evolutionary and demographic processes affecting how genetic variation is partitioned and distributed over large geographical scales is of fundamental importance for our understanding of how organisms may adapt to their environments. Northern peripheral populations generally have lower genetic variation and individuals in these populations may therefore face difficulties adapting to their local environment. At northern latitudes lack of genetic variation could be detrimental in face of newly emerging diseases as a result of anthropogenic actions and warmer climate in these areas. In this thesis, I explore genetic variation and the contemporary evolutionary processes affecting genes involved in the adaptive immune defense (Major Histocompatibility Complex; MHC) and the innate immune defense (AMP; Antimicrobial Peptides) over a large geographical gradient in anuran species (paper I, II and IV). I study signatures of historical selection on the MHC class II exon 2 and AMP (Temporin, Brevinin and Palustrin) sequences in the Signal Peptide and the Acidic Propiece domains (paper II and III). Finally, I investigate potential associations between specific MHC class II exon 2 alleles and a chytrid fungus infection (Bd) in common toads (Bufo bufo) (paper IV). The results reveal that genetic variation of MHC class II exon 2 decreases towards northern latitudes in R. arvalis and B. bufo and have been shaped by complex evolutionary processes (drift, selection, migration) affected by different demographic scenarios. On the other hand, AMP nucleotide variation is divergent among geographical areas, but there is no clear geographical pattern along the same gradient, suggesting diversifying selection as the main force shaping genetic variation. Finally, I found an effect of two specific MHC class II exon 2 alleles on survival in juvenile B. bufo when infected with Bd. In summary, my thesis unravels the complex patterns shaping genetic diversity at large scales. My results may guide conservation practices aiming to prevent amphibian mass mortality events on-going all over the world.